9t^2-22+9=0

Simple and best practice solution for 9t^2-22+9=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9t^2-22+9=0 equation:



9t^2-22+9=0
We add all the numbers together, and all the variables
9t^2-13=0
a = 9; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·9·(-13)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{13}}{2*9}=\frac{0-6\sqrt{13}}{18} =-\frac{6\sqrt{13}}{18} =-\frac{\sqrt{13}}{3} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{13}}{2*9}=\frac{0+6\sqrt{13}}{18} =\frac{6\sqrt{13}}{18} =\frac{\sqrt{13}}{3} $

See similar equations:

| 19-2x=x+6 | | 20/55=4/n | | 16/n=4/9 | | 3(2n+5)=2n-8= | | (-x+12)+(-5x-13)+(6-x)=180 | | (3x+1)+(-3+8x)+(6x-5)=180 | | (13-2x)+(-2-4x)+73=180 | | V=4/3x3.14x1.150^3 | | (6x-15)+(-10+3x)+25=180 | | (9x-25)+(10x+8)+26=180 | | -1/2c-5=20 | | (-2x-4)+(-7x+1)+(-x+13)=180 | | (-2x-4)+(7x+1)+(-x+13)=180 | | (18+x)+(x+39)+(-3+4x)=180 | | 100=5n-8 | | (3x-5)+(7x+2)+(-12+5x)=180 | | 0.5/0.125=c/4 | | 35+(9x-2)+(5x+7)=180 | | Z=3x+1 | | 25+(10+3x)+(6x-15)=180 | | 33+18=29=x | | (15-x)+(-3x)+45=180 | | (-15+x)+(3x)+45=180 | | 3x2-2=8 | | (1/2)x+13=12 | | -7x+8-3x=-12 | | 7i-2i=76-25 | | 2x-3(2x-7)=15 | | 14=k(3) | | x/2+3/4=5 | | 3x^+1=76 | | 2e^-3e+1=0 |

Equations solver categories